Workflow parameters
Parameters under the namespace workflow
regulate the function of the pipeline as a whole.
Table of contents
By default, the pipeline starts from the registration step (ASHLAR), proceeds through UnMICST, S3segmenter, and stops after executing the quantification MCQuant step.
start-at
Name of the first step to be executed by the pipeline
- Valid values:
illumination
,registration
,background
(background only),dearray
(TMA only),segmentation
,watershed
,quantification
,downstream
- Default:
registration
- Example:
workflow:
start-at: segmentation
stop-at
Name of the final step to be executed by the pipeline
- Valid values:
illumination
,registration
,background
(background only),dearray
(TMA only),segmentation
,quantification
,downstream
- Default:
quantification
- Example:
workflow:
stop-at: downstream
Additional examples: Specifying start and stop modules
Use start-at
and stop-at
workflow parameters to execute any contiguous section of the pipeline. Remember, by default the pipeline will run from ASHLAR through MCQuant.
Example 1: Running illumination correction and registration only
workflow:
start-at: illumination
stop-at: registration
Example 2: Start by dearraying an already-registered TMA image
workflow:
tma: true
start-at: dearray
Note: Starting at any step beyond registration requires pre-computed output of the previous steps placed at the correct location in the project directory.
tma
If true
, MCMICRO treats input data as a TMA. If false
, the input is assumed to be a whole-slide image
- Valid values:
true
,false
- Default:
false
- Example:
workflow:
tma: true
segmentation-channel
One or more channels to use for segmentation, specified using 1-based indexing; values will be forwarded to all segmentation modules
- Valid values: one or more positive integers, each separated with a space
- Default:
1
- Example:
workflow:
segmentation-channel: 1 5
segmentation-recyze
Whether the image should be reduced to the channels specified in segmentation-channel
prior to being provided to the segmentation modules.
- Valid values:
true
,false
- Default:
false
- Example:
workflow:
segmentation-channel: 5
segmentation-recyze: true
ilastik-model
A custom .ilp
file to be used as the classifier model for ilastik
- Valid values: A full path to any file
- Default: None
- Example:
workflow:
ilastik-model: /full/path/to/mymodel.ilp
segmentation
A list of segmentation modules to run
- Valid values: One or more of
unmicst
,ilastik
,mesmer
,cypository
,cellpose
specified as a YAML list - Default:
unmicst
- Example:
workflow:
segmentation: [unmicst, ilastik]
downstream
A list of downstream modules to run
- Valid values: One or more of
naivestates
,scimap
,fastpg
,scanpy
,flowsom
- Default:
scimap
- Example:
workflow:
downstream: [scanpy, flowsom]
viz
Whether to generate a vizualization with Auto-Minerva
- Valid values:
true
,false
- Default:
false
- Example:
workflow:
viz: true
qc-files
Whether QC files should be copied, moved, hard linked, or symbolically linked from work directories to the project directory. ‘inherit’ may be specified to use the value of the publish_dir_mode pipeline parameter.
- Valid values:
copy
,move
,link
,symlink
,inherit
- Default:
inherit
- Example:
workflow:
qc-files: move
background
Whether background subtraction should be performed, and the computed intermediates used in further processing
- Valid values:
true
,false
- Default:
false
- Example:
workflow:
background: true
background-method
Which background subtraction module to use when background: true
.
- Valid values:
backsub
,imagej-rolling-ball
- Default:
backsub
- Example:
workflow:
background-method: backsub